Description: Negation in a ring is the same as right multiplication by -1. ( rngonegmn1r analog.) (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringnegl.b | |
|
| ringnegl.t | |
||
| ringnegl.u | |
||
| ringnegl.n | |
||
| ringnegl.r | |
||
| ringnegl.x | |
||
| Assertion | ringnegr | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringnegl.b | |
|
| 2 | ringnegl.t | |
|
| 3 | ringnegl.u | |
|
| 4 | ringnegl.n | |
|
| 5 | ringnegl.r | |
|
| 6 | ringnegl.x | |
|
| 7 | ringgrp | |
|
| 8 | 5 7 | syl | |
| 9 | 1 3 | ringidcl | |
| 10 | 5 9 | syl | |
| 11 | 1 4 | grpinvcl | |
| 12 | 8 10 11 | syl2anc | |
| 13 | eqid | |
|
| 14 | 1 13 2 | ringdi | |
| 15 | 5 6 12 10 14 | syl13anc | |
| 16 | eqid | |
|
| 17 | 1 13 16 4 | grplinv | |
| 18 | 8 10 17 | syl2anc | |
| 19 | 18 | oveq2d | |
| 20 | 1 2 16 | ringrz | |
| 21 | 5 6 20 | syl2anc | |
| 22 | 19 21 | eqtrd | |
| 23 | 1 2 3 | ringridm | |
| 24 | 5 6 23 | syl2anc | |
| 25 | 24 | oveq2d | |
| 26 | 15 22 25 | 3eqtr3rd | |
| 27 | 1 2 | ringcl | |
| 28 | 5 6 12 27 | syl3anc | |
| 29 | 1 13 16 4 | grpinvid2 | |
| 30 | 8 6 28 29 | syl3anc | |
| 31 | 26 30 | mpbird | |
| 32 | 31 | eqcomd | |