Metamath Proof Explorer


Theorem ringo2times

Description: A ring element plus itself is two times the element. "Two" in an arbitrary unital ring is the sum of the unity element with itself. (Contributed by AV, 24-Aug-2021) Variant of o2timesd for rings. (Revised by AV, 5-Feb-2025)

Ref Expression
Hypotheses ringo2times.b B = Base R
ringo2times.p + ˙ = + R
ringo2times.t · ˙ = R
ringo2times.u 1 ˙ = 1 R
Assertion ringo2times R Ring A B A + ˙ A = 1 ˙ + ˙ 1 ˙ · ˙ A

Proof

Step Hyp Ref Expression
1 ringo2times.b B = Base R
2 ringo2times.p + ˙ = + R
3 ringo2times.t · ˙ = R
4 ringo2times.u 1 ˙ = 1 R
5 1 2 3 ringdir R Ring x B y B z B x + ˙ y · ˙ z = x · ˙ z + ˙ y · ˙ z
6 5 ralrimivvva R Ring x B y B z B x + ˙ y · ˙ z = x · ˙ z + ˙ y · ˙ z
7 6 adantr R Ring A B x B y B z B x + ˙ y · ˙ z = x · ˙ z + ˙ y · ˙ z
8 1 4 ringidcl R Ring 1 ˙ B
9 8 adantr R Ring A B 1 ˙ B
10 1 3 4 ringlidm R Ring x B 1 ˙ · ˙ x = x
11 10 ralrimiva R Ring x B 1 ˙ · ˙ x = x
12 11 adantr R Ring A B x B 1 ˙ · ˙ x = x
13 simpr R Ring A B A B
14 7 9 12 13 o2timesd R Ring A B A + ˙ A = 1 ˙ + ˙ 1 ˙ · ˙ A