Metamath Proof Explorer


Theorem ringpropd

Description: If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a ring iff the other one is. (Contributed by Mario Carneiro, 6-Dec-2014) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses ringpropd.1 φ B = Base K
ringpropd.2 φ B = Base L
ringpropd.3 φ x B y B x + K y = x + L y
ringpropd.4 φ x B y B x K y = x L y
Assertion ringpropd φ K Ring L Ring

Proof

Step Hyp Ref Expression
1 ringpropd.1 φ B = Base K
2 ringpropd.2 φ B = Base L
3 ringpropd.3 φ x B y B x + K y = x + L y
4 ringpropd.4 φ x B y B x K y = x L y
5 simpll φ K Grp mulGrp K Mnd u B v B w B φ
6 simprll φ K Grp mulGrp K Mnd u B v B w B u B
7 simplrl φ K Grp mulGrp K Mnd u B v B w B K Grp
8 simprlr φ K Grp mulGrp K Mnd u B v B w B v B
9 1 ad2antrr φ K Grp mulGrp K Mnd u B v B w B B = Base K
10 8 9 eleqtrd φ K Grp mulGrp K Mnd u B v B w B v Base K
11 simprr φ K Grp mulGrp K Mnd u B v B w B w B
12 11 9 eleqtrd φ K Grp mulGrp K Mnd u B v B w B w Base K
13 eqid Base K = Base K
14 eqid + K = + K
15 13 14 grpcl K Grp v Base K w Base K v + K w Base K
16 7 10 12 15 syl3anc φ K Grp mulGrp K Mnd u B v B w B v + K w Base K
17 16 9 eleqtrrd φ K Grp mulGrp K Mnd u B v B w B v + K w B
18 4 oveqrspc2v φ u B v + K w B u K v + K w = u L v + K w
19 5 6 17 18 syl12anc φ K Grp mulGrp K Mnd u B v B w B u K v + K w = u L v + K w
20 3 oveqrspc2v φ v B w B v + K w = v + L w
21 5 8 11 20 syl12anc φ K Grp mulGrp K Mnd u B v B w B v + K w = v + L w
22 21 oveq2d φ K Grp mulGrp K Mnd u B v B w B u L v + K w = u L v + L w
23 19 22 eqtrd φ K Grp mulGrp K Mnd u B v B w B u K v + K w = u L v + L w
24 simplrr φ K Grp mulGrp K Mnd u B v B w B mulGrp K Mnd
25 6 9 eleqtrd φ K Grp mulGrp K Mnd u B v B w B u Base K
26 eqid mulGrp K = mulGrp K
27 26 13 mgpbas Base K = Base mulGrp K
28 eqid K = K
29 26 28 mgpplusg K = + mulGrp K
30 27 29 mndcl mulGrp K Mnd u Base K v Base K u K v Base K
31 24 25 10 30 syl3anc φ K Grp mulGrp K Mnd u B v B w B u K v Base K
32 31 9 eleqtrrd φ K Grp mulGrp K Mnd u B v B w B u K v B
33 27 29 mndcl mulGrp K Mnd u Base K w Base K u K w Base K
34 24 25 12 33 syl3anc φ K Grp mulGrp K Mnd u B v B w B u K w Base K
35 34 9 eleqtrrd φ K Grp mulGrp K Mnd u B v B w B u K w B
36 3 oveqrspc2v φ u K v B u K w B u K v + K u K w = u K v + L u K w
37 5 32 35 36 syl12anc φ K Grp mulGrp K Mnd u B v B w B u K v + K u K w = u K v + L u K w
38 4 oveqrspc2v φ u B v B u K v = u L v
39 5 6 8 38 syl12anc φ K Grp mulGrp K Mnd u B v B w B u K v = u L v
40 4 oveqrspc2v φ u B w B u K w = u L w
41 5 6 11 40 syl12anc φ K Grp mulGrp K Mnd u B v B w B u K w = u L w
42 39 41 oveq12d φ K Grp mulGrp K Mnd u B v B w B u K v + L u K w = u L v + L u L w
43 37 42 eqtrd φ K Grp mulGrp K Mnd u B v B w B u K v + K u K w = u L v + L u L w
44 23 43 eqeq12d φ K Grp mulGrp K Mnd u B v B w B u K v + K w = u K v + K u K w u L v + L w = u L v + L u L w
45 13 14 grpcl K Grp u Base K v Base K u + K v Base K
46 7 25 10 45 syl3anc φ K Grp mulGrp K Mnd u B v B w B u + K v Base K
47 46 9 eleqtrrd φ K Grp mulGrp K Mnd u B v B w B u + K v B
48 4 oveqrspc2v φ u + K v B w B u + K v K w = u + K v L w
49 5 47 11 48 syl12anc φ K Grp mulGrp K Mnd u B v B w B u + K v K w = u + K v L w
50 3 oveqrspc2v φ u B v B u + K v = u + L v
51 5 6 8 50 syl12anc φ K Grp mulGrp K Mnd u B v B w B u + K v = u + L v
52 51 oveq1d φ K Grp mulGrp K Mnd u B v B w B u + K v L w = u + L v L w
53 49 52 eqtrd φ K Grp mulGrp K Mnd u B v B w B u + K v K w = u + L v L w
54 27 29 mndcl mulGrp K Mnd v Base K w Base K v K w Base K
55 24 10 12 54 syl3anc φ K Grp mulGrp K Mnd u B v B w B v K w Base K
56 55 9 eleqtrrd φ K Grp mulGrp K Mnd u B v B w B v K w B
57 3 oveqrspc2v φ u K w B v K w B u K w + K v K w = u K w + L v K w
58 5 35 56 57 syl12anc φ K Grp mulGrp K Mnd u B v B w B u K w + K v K w = u K w + L v K w
59 4 oveqrspc2v φ v B w B v K w = v L w
60 5 8 11 59 syl12anc φ K Grp mulGrp K Mnd u B v B w B v K w = v L w
61 41 60 oveq12d φ K Grp mulGrp K Mnd u B v B w B u K w + L v K w = u L w + L v L w
62 58 61 eqtrd φ K Grp mulGrp K Mnd u B v B w B u K w + K v K w = u L w + L v L w
63 53 62 eqeq12d φ K Grp mulGrp K Mnd u B v B w B u + K v K w = u K w + K v K w u + L v L w = u L w + L v L w
64 44 63 anbi12d φ K Grp mulGrp K Mnd u B v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
65 64 anassrs φ K Grp mulGrp K Mnd u B v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
66 65 ralbidva φ K Grp mulGrp K Mnd u B v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w w B u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
67 66 2ralbidva φ K Grp mulGrp K Mnd u B v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w u B v B w B u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
68 1 adantr φ K Grp mulGrp K Mnd B = Base K
69 68 raleqdv φ K Grp mulGrp K Mnd w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w
70 68 69 raleqbidv φ K Grp mulGrp K Mnd v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w
71 68 70 raleqbidv φ K Grp mulGrp K Mnd u B v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w
72 2 adantr φ K Grp mulGrp K Mnd B = Base L
73 72 raleqdv φ K Grp mulGrp K Mnd w B u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
74 72 73 raleqbidv φ K Grp mulGrp K Mnd v B w B u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
75 72 74 raleqbidv φ K Grp mulGrp K Mnd u B v B w B u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
76 67 71 75 3bitr3d φ K Grp mulGrp K Mnd u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
77 76 pm5.32da φ K Grp mulGrp K Mnd u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w K Grp mulGrp K Mnd u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
78 df-3an K Grp mulGrp K Mnd u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w K Grp mulGrp K Mnd u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w
79 df-3an K Grp mulGrp K Mnd u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w K Grp mulGrp K Mnd u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
80 77 78 79 3bitr4g φ K Grp mulGrp K Mnd u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w K Grp mulGrp K Mnd u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
81 1 2 3 grppropd φ K Grp L Grp
82 1 27 eqtrdi φ B = Base mulGrp K
83 eqid mulGrp L = mulGrp L
84 eqid Base L = Base L
85 83 84 mgpbas Base L = Base mulGrp L
86 2 85 eqtrdi φ B = Base mulGrp L
87 29 oveqi x K y = x + mulGrp K y
88 eqid L = L
89 83 88 mgpplusg L = + mulGrp L
90 89 oveqi x L y = x + mulGrp L y
91 4 87 90 3eqtr3g φ x B y B x + mulGrp K y = x + mulGrp L y
92 82 86 91 mndpropd φ mulGrp K Mnd mulGrp L Mnd
93 81 92 3anbi12d φ K Grp mulGrp K Mnd u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w L Grp mulGrp L Mnd u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
94 80 93 bitrd φ K Grp mulGrp K Mnd u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w L Grp mulGrp L Mnd u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
95 13 26 14 28 isring K Ring K Grp mulGrp K Mnd u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w
96 eqid + L = + L
97 84 83 96 88 isring L Ring L Grp mulGrp L Mnd u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
98 94 95 97 3bitr4g φ K Ring L Ring