Step |
Hyp |
Ref |
Expression |
1 |
|
ringpropd.1 |
|
2 |
|
ringpropd.2 |
|
3 |
|
ringpropd.3 |
|
4 |
|
ringpropd.4 |
|
5 |
|
simpll |
|
6 |
|
simprll |
|
7 |
|
simplrl |
|
8 |
|
simprlr |
|
9 |
1
|
ad2antrr |
|
10 |
8 9
|
eleqtrd |
|
11 |
|
simprr |
|
12 |
11 9
|
eleqtrd |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
13 14
|
grpcl |
|
16 |
7 10 12 15
|
syl3anc |
|
17 |
16 9
|
eleqtrrd |
|
18 |
4
|
oveqrspc2v |
|
19 |
5 6 17 18
|
syl12anc |
|
20 |
3
|
oveqrspc2v |
|
21 |
5 8 11 20
|
syl12anc |
|
22 |
21
|
oveq2d |
|
23 |
19 22
|
eqtrd |
|
24 |
|
simplrr |
|
25 |
6 9
|
eleqtrd |
|
26 |
|
eqid |
|
27 |
26 13
|
mgpbas |
|
28 |
|
eqid |
|
29 |
26 28
|
mgpplusg |
|
30 |
27 29
|
mndcl |
|
31 |
24 25 10 30
|
syl3anc |
|
32 |
31 9
|
eleqtrrd |
|
33 |
27 29
|
mndcl |
|
34 |
24 25 12 33
|
syl3anc |
|
35 |
34 9
|
eleqtrrd |
|
36 |
3
|
oveqrspc2v |
|
37 |
5 32 35 36
|
syl12anc |
|
38 |
4
|
oveqrspc2v |
|
39 |
5 6 8 38
|
syl12anc |
|
40 |
4
|
oveqrspc2v |
|
41 |
5 6 11 40
|
syl12anc |
|
42 |
39 41
|
oveq12d |
|
43 |
37 42
|
eqtrd |
|
44 |
23 43
|
eqeq12d |
|
45 |
13 14
|
grpcl |
|
46 |
7 25 10 45
|
syl3anc |
|
47 |
46 9
|
eleqtrrd |
|
48 |
4
|
oveqrspc2v |
|
49 |
5 47 11 48
|
syl12anc |
|
50 |
3
|
oveqrspc2v |
|
51 |
5 6 8 50
|
syl12anc |
|
52 |
51
|
oveq1d |
|
53 |
49 52
|
eqtrd |
|
54 |
27 29
|
mndcl |
|
55 |
24 10 12 54
|
syl3anc |
|
56 |
55 9
|
eleqtrrd |
|
57 |
3
|
oveqrspc2v |
|
58 |
5 35 56 57
|
syl12anc |
|
59 |
4
|
oveqrspc2v |
|
60 |
5 8 11 59
|
syl12anc |
|
61 |
41 60
|
oveq12d |
|
62 |
58 61
|
eqtrd |
|
63 |
53 62
|
eqeq12d |
|
64 |
44 63
|
anbi12d |
|
65 |
64
|
anassrs |
|
66 |
65
|
ralbidva |
|
67 |
66
|
2ralbidva |
|
68 |
1
|
adantr |
|
69 |
68
|
raleqdv |
|
70 |
68 69
|
raleqbidv |
|
71 |
68 70
|
raleqbidv |
|
72 |
2
|
adantr |
|
73 |
72
|
raleqdv |
|
74 |
72 73
|
raleqbidv |
|
75 |
72 74
|
raleqbidv |
|
76 |
67 71 75
|
3bitr3d |
|
77 |
76
|
pm5.32da |
|
78 |
|
df-3an |
|
79 |
|
df-3an |
|
80 |
77 78 79
|
3bitr4g |
|
81 |
1 2 3
|
grppropd |
|
82 |
1 27
|
eqtrdi |
|
83 |
|
eqid |
|
84 |
|
eqid |
|
85 |
83 84
|
mgpbas |
|
86 |
2 85
|
eqtrdi |
|
87 |
29
|
oveqi |
|
88 |
|
eqid |
|
89 |
83 88
|
mgpplusg |
|
90 |
89
|
oveqi |
|
91 |
4 87 90
|
3eqtr3g |
|
92 |
82 86 91
|
mndpropd |
|
93 |
81 92
|
3anbi12d |
|
94 |
80 93
|
bitrd |
|
95 |
13 26 14 28
|
isring |
|
96 |
|
eqid |
|
97 |
84 83 96 88
|
isring |
|
98 |
94 95 97
|
3bitr4g |
|