Metamath Proof Explorer


Theorem ringrng

Description: A unital ring is a non-unital ring. (Contributed by AV, 6-Jan-2020)

Ref Expression
Assertion ringrng R Ring R Rng

Proof

Step Hyp Ref Expression
1 ringabl R Ring R Abel
2 eqid Base R = Base R
3 eqid mulGrp R = mulGrp R
4 eqid + R = + R
5 eqid R = R
6 2 3 4 5 isring R Ring R Grp mulGrp R Mnd x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z
7 simpl R Abel R Grp mulGrp R Mnd x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z R Abel
8 mndsgrp mulGrp R Mnd mulGrp R Smgrp
9 8 3ad2ant2 R Grp mulGrp R Mnd x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z mulGrp R Smgrp
10 9 adantl R Abel R Grp mulGrp R Mnd x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z mulGrp R Smgrp
11 simpr3 R Abel R Grp mulGrp R Mnd x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z
12 2 3 4 5 isrng R Rng R Abel mulGrp R Smgrp x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z
13 7 10 11 12 syl3anbrc R Abel R Grp mulGrp R Mnd x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z R Rng
14 13 ex R Abel R Grp mulGrp R Mnd x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z R Rng
15 6 14 biimtrid R Abel R Ring R Rng
16 1 15 mpcom R Ring R Rng