Metamath Proof Explorer


Theorem ringrzd

Description: The zero of a unital ring is a right-absorbing element. (Contributed by SN, 7-Mar-2025)

Ref Expression
Hypotheses ringz.b B = Base R
ringz.t · ˙ = R
ringz.z 0 ˙ = 0 R
ringlzd.r φ R Ring
ringlzd.x φ X B
Assertion ringrzd φ X · ˙ 0 ˙ = 0 ˙

Proof

Step Hyp Ref Expression
1 ringz.b B = Base R
2 ringz.t · ˙ = R
3 ringz.z 0 ˙ = 0 R
4 ringlzd.r φ R Ring
5 ringlzd.x φ X B
6 1 2 3 ringrz R Ring X B X · ˙ 0 ˙ = 0 ˙
7 4 5 6 syl2anc φ X · ˙ 0 ˙ = 0 ˙