Metamath Proof Explorer


Theorem ringsrg

Description: Any ring is also a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Assertion ringsrg RRingRSRing

Proof

Step Hyp Ref Expression
1 ringcmn RRingRCMnd
2 eqid mulGrpR=mulGrpR
3 2 ringmgp RRingmulGrpRMnd
4 eqid BaseR=BaseR
5 eqid +R=+R
6 eqid R=R
7 4 2 5 6 isring RRingRGrpmulGrpRMndxBaseRyBaseRzBaseRxRy+Rz=xRy+RxRzx+RyRz=xRz+RyRz
8 7 simp3bi RRingxBaseRyBaseRzBaseRxRy+Rz=xRy+RxRzx+RyRz=xRz+RyRz
9 eqid 0R=0R
10 4 6 9 ringlz RRingxBaseR0RRx=0R
11 4 6 9 ringrz RRingxBaseRxR0R=0R
12 10 11 jca RRingxBaseR0RRx=0RxR0R=0R
13 12 ralrimiva RRingxBaseR0RRx=0RxR0R=0R
14 r19.26 xBaseRyBaseRzBaseRxRy+Rz=xRy+RxRzx+RyRz=xRz+RyRz0RRx=0RxR0R=0RxBaseRyBaseRzBaseRxRy+Rz=xRy+RxRzx+RyRz=xRz+RyRzxBaseR0RRx=0RxR0R=0R
15 8 13 14 sylanbrc RRingxBaseRyBaseRzBaseRxRy+Rz=xRy+RxRzx+RyRz=xRz+RyRz0RRx=0RxR0R=0R
16 4 2 5 6 9 issrg RSRingRCMndmulGrpRMndxBaseRyBaseRzBaseRxRy+Rz=xRy+RxRzx+RyRz=xRz+RyRz0RRx=0RxR0R=0R
17 1 3 15 16 syl3anbrc RRingRSRing