Metamath Proof Explorer


Theorem ringsrg

Description: Any ring is also a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Assertion ringsrg R Ring R SRing

Proof

Step Hyp Ref Expression
1 ringcmn R Ring R CMnd
2 eqid mulGrp R = mulGrp R
3 2 ringmgp R Ring mulGrp R Mnd
4 eqid Base R = Base R
5 eqid + R = + R
6 eqid R = R
7 4 2 5 6 isring R Ring R Grp mulGrp R Mnd x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z
8 7 simp3bi R Ring x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z
9 eqid 0 R = 0 R
10 4 6 9 ringlz R Ring x Base R 0 R R x = 0 R
11 4 6 9 ringrz R Ring x Base R x R 0 R = 0 R
12 10 11 jca R Ring x Base R 0 R R x = 0 R x R 0 R = 0 R
13 12 ralrimiva R Ring x Base R 0 R R x = 0 R x R 0 R = 0 R
14 r19.26 x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z 0 R R x = 0 R x R 0 R = 0 R x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z x Base R 0 R R x = 0 R x R 0 R = 0 R
15 8 13 14 sylanbrc R Ring x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z 0 R R x = 0 R x R 0 R = 0 R
16 4 2 5 6 9 issrg R SRing R CMnd mulGrp R Mnd x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z 0 R R x = 0 R x R 0 R = 0 R
17 1 3 15 16 syl3anbrc R Ring R SRing