Metamath Proof Explorer


Theorem ringsubdi

Description: Ring multiplication distributes over subtraction. ( subdi analog.) (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014)

Ref Expression
Hypotheses ringsubdi.b B=BaseR
ringsubdi.t ·˙=R
ringsubdi.m -˙=-R
ringsubdi.r φRRing
ringsubdi.x φXB
ringsubdi.y φYB
ringsubdi.z φZB
Assertion ringsubdi φX·˙Y-˙Z=X·˙Y-˙X·˙Z

Proof

Step Hyp Ref Expression
1 ringsubdi.b B=BaseR
2 ringsubdi.t ·˙=R
3 ringsubdi.m -˙=-R
4 ringsubdi.r φRRing
5 ringsubdi.x φXB
6 ringsubdi.y φYB
7 ringsubdi.z φZB
8 ringrng RRingRRng
9 4 8 syl φRRng
10 1 2 3 9 5 6 7 rngsubdi φX·˙Y-˙Z=X·˙Y-˙X·˙Z