Database BASIC ALGEBRAIC STRUCTURES Rings Unital rings ringsubdir  
				
		 
		
			
		 
		Description:   Ring multiplication distributes over subtraction.  ( subdir  analog.)
       (Contributed by Jeff Madsen , 19-Jun-2010)   (Revised by Mario Carneiro , 2-Jul-2014) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ringsubdi.b   ⊢   B  =  Base  R      
					 
					
						ringsubdi.t   ⊢   ·  ˙ =  ⋅  R      
					 
					
						ringsubdi.m   ⊢   -  ˙ =  -  R      
					 
					
						ringsubdi.r    ⊢   φ   →   R  ∈  Ring         
					 
					
						ringsubdi.x    ⊢   φ   →   X  ∈  B         
					 
					
						ringsubdi.y    ⊢   φ   →   Y  ∈  B         
					 
					
						ringsubdi.z    ⊢   φ   →   Z  ∈  B         
					 
				
					Assertion 
					ringsubdir    ⊢   φ   →   X  -  ˙ Y ·  ˙ Z =  X  ·  ˙ Z -  ˙ Y  ·  ˙ Z        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ringsubdi.b  ⊢   B  =  Base  R      
						
							2 
								
							 
							ringsubdi.t  ⊢   ·  ˙ =  ⋅  R      
						
							3 
								
							 
							ringsubdi.m  ⊢   -  ˙ =  -  R      
						
							4 
								
							 
							ringsubdi.r   ⊢   φ   →   R  ∈  Ring         
						
							5 
								
							 
							ringsubdi.x   ⊢   φ   →   X  ∈  B         
						
							6 
								
							 
							ringsubdi.y   ⊢   φ   →   Y  ∈  B         
						
							7 
								
							 
							ringsubdi.z   ⊢   φ   →   Z  ∈  B         
						
							8 
								
							 
							ringrng   ⊢   R  ∈  Ring    →   R  ∈  Rng         
						
							9 
								4  8 
							 
							syl   ⊢   φ   →   R  ∈  Rng         
						
							10 
								1  2  3  9  5  6  7 
							 
							rngsubdir   ⊢   φ   →   X  -  ˙ Y ·  ˙ Z =  X  ·  ˙ Z -  ˙ Y  ·  ˙ Z