Metamath Proof Explorer


Theorem ringunitnzdiv

Description: In a unitary ring, a unit is not a zero divisor. (Contributed by AV, 7-Mar-2025)

Ref Expression
Hypotheses ringunitnzdiv.b B = Base R
ringunitnzdiv.z 0 ˙ = 0 R
ringunitnzdiv.t · ˙ = R
ringunitnzdiv.r φ R Ring
ringunitnzdiv.y φ Y B
ringunitnzdiv.x φ X Unit R
Assertion ringunitnzdiv φ X · ˙ Y = 0 ˙ Y = 0 ˙

Proof

Step Hyp Ref Expression
1 ringunitnzdiv.b B = Base R
2 ringunitnzdiv.z 0 ˙ = 0 R
3 ringunitnzdiv.t · ˙ = R
4 ringunitnzdiv.r φ R Ring
5 ringunitnzdiv.y φ Y B
6 ringunitnzdiv.x φ X Unit R
7 eqid 1 R = 1 R
8 eqid Unit R = Unit R
9 1 8 unitcl X Unit R X B
10 6 9 syl φ X B
11 eqid inv r R = inv r R
12 8 11 1 ringinvcl R Ring X Unit R inv r R X B
13 4 6 12 syl2anc φ inv r R X B
14 oveq1 e = inv r R X e · ˙ X = inv r R X · ˙ X
15 14 eqeq1d e = inv r R X e · ˙ X = 1 R inv r R X · ˙ X = 1 R
16 15 adantl φ e = inv r R X e · ˙ X = 1 R inv r R X · ˙ X = 1 R
17 8 11 3 7 unitlinv R Ring X Unit R inv r R X · ˙ X = 1 R
18 4 6 17 syl2anc φ inv r R X · ˙ X = 1 R
19 13 16 18 rspcedvd φ e B e · ˙ X = 1 R
20 1 3 7 2 4 10 19 5 ringinvnzdiv φ X · ˙ Y = 0 ˙ Y = 0 ˙