| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringurd.b |
|
| 2 |
|
ringurd.p |
|
| 3 |
|
ringurd.z |
|
| 4 |
|
ringurd.i |
|
| 5 |
|
ringurd.j |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
6 7 8
|
dfur2 |
|
| 10 |
3 1
|
eleqtrd |
|
| 11 |
4 5
|
jca |
|
| 12 |
11
|
ralrimiva |
|
| 13 |
2
|
adantr |
|
| 14 |
13
|
oveqd |
|
| 15 |
14
|
eqeq1d |
|
| 16 |
13
|
oveqd |
|
| 17 |
16
|
eqeq1d |
|
| 18 |
15 17
|
anbi12d |
|
| 19 |
1 18
|
raleqbidva |
|
| 20 |
12 19
|
mpbid |
|
| 21 |
1
|
eleq2d |
|
| 22 |
13
|
oveqd |
|
| 23 |
22
|
eqeq1d |
|
| 24 |
13
|
oveqd |
|
| 25 |
24
|
eqeq1d |
|
| 26 |
23 25
|
anbi12d |
|
| 27 |
1 26
|
raleqbidva |
|
| 28 |
21 27
|
anbi12d |
|
| 29 |
4
|
ralrimiva |
|
| 30 |
29
|
adantr |
|
| 31 |
|
simpr |
|
| 32 |
|
simpr |
|
| 33 |
32
|
oveq2d |
|
| 34 |
33 32
|
eqeq12d |
|
| 35 |
31 34
|
rspcdv |
|
| 36 |
30 35
|
mpd |
|
| 37 |
36
|
adantrr |
|
| 38 |
3
|
adantr |
|
| 39 |
|
simprr |
|
| 40 |
|
oveq2 |
|
| 41 |
|
id |
|
| 42 |
40 41
|
eqeq12d |
|
| 43 |
|
oveq1 |
|
| 44 |
43 41
|
eqeq12d |
|
| 45 |
42 44
|
anbi12d |
|
| 46 |
45
|
rspcva |
|
| 47 |
46
|
simprd |
|
| 48 |
38 39 47
|
syl2anc |
|
| 49 |
37 48
|
eqtr3d |
|
| 50 |
49
|
ex |
|
| 51 |
28 50
|
sylbird |
|
| 52 |
51
|
alrimiv |
|
| 53 |
|
eleq1 |
|
| 54 |
|
oveq1 |
|
| 55 |
54
|
eqeq1d |
|
| 56 |
55
|
ovanraleqv |
|
| 57 |
53 56
|
anbi12d |
|
| 58 |
57
|
eqeu |
|
| 59 |
10 10 20 52 58
|
syl121anc |
|
| 60 |
57
|
iota2 |
|
| 61 |
3 59 60
|
syl2anc |
|
| 62 |
10 20 61
|
mpbi2and |
|
| 63 |
9 62
|
eqtr2id |
|