Metamath Proof Explorer


Theorem ringvcl

Description: Tuple-wise multiplication closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses ringvcl.b B = Base R
ringvcl.t · ˙ = R
Assertion ringvcl R Ring X B I Y B I X · ˙ f Y B I

Proof

Step Hyp Ref Expression
1 ringvcl.b B = Base R
2 ringvcl.t · ˙ = R
3 eqid mulGrp R = mulGrp R
4 3 ringmgp R Ring mulGrp R Mnd
5 3 1 mgpbas B = Base mulGrp R
6 3 2 mgpplusg · ˙ = + mulGrp R
7 5 6 mndvcl mulGrp R Mnd X B I Y B I X · ˙ f Y B I
8 4 7 syl3an1 R Ring X B I Y B I X · ˙ f Y B I