Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The intersection of a class
rint0
Next ⟩
elrint
Metamath Proof Explorer
Ascii
Unicode
Theorem
rint0
Description:
Relative intersection of an empty set.
(Contributed by
Stefan O'Rear
, 3-Apr-2015)
Ref
Expression
Assertion
rint0
⊢
X
=
∅
→
A
∩
⋂
X
=
A
Proof
Step
Hyp
Ref
Expression
1
inteq
⊢
X
=
∅
→
⋂
X
=
⋂
∅
2
1
ineq2d
⊢
X
=
∅
→
A
∩
⋂
X
=
A
∩
⋂
∅
3
int0
⊢
⋂
∅
=
V
4
3
ineq2i
⊢
A
∩
⋂
∅
=
A
∩
V
5
inv1
⊢
A
∩
V
=
A
6
4
5
eqtri
⊢
A
∩
⋂
∅
=
A
7
2
6
eqtrdi
⊢
X
=
∅
→
A
∩
⋂
X
=
A