Metamath Proof Explorer


Theorem rintn0

Description: Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015) (Revised by Mario Carneiro, 5-Jun-2015)

Ref Expression
Assertion rintn0 X 𝒫 A X A X = X

Proof

Step Hyp Ref Expression
1 intssuni2 X 𝒫 A X X 𝒫 A
2 ssid 𝒫 A 𝒫 A
3 sspwuni 𝒫 A 𝒫 A 𝒫 A A
4 2 3 mpbi 𝒫 A A
5 1 4 sstrdi X 𝒫 A X X A
6 sseqin2 X A A X = X
7 5 6 sylib X 𝒫 A X A X = X