Metamath Proof Explorer


Theorem rintopn

Description: A finite relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis 1open.1 X = J
Assertion rintopn J Top A J A Fin X A J

Proof

Step Hyp Ref Expression
1 1open.1 X = J
2 intiin A = x A x
3 2 ineq2i X A = X x A x
4 dfss3 A J x A x J
5 1 riinopn J Top A Fin x A x J X x A x J
6 5 3com23 J Top x A x J A Fin X x A x J
7 4 6 syl3an2b J Top A J A Fin X x A x J
8 3 7 eqeltrid J Top A J A Fin X A J