Metamath Proof Explorer


Theorem rinvf1o

Description: Sufficient conditions for the restriction of an involution to be a bijection. (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Hypotheses rinvbij.1 Fun F
rinvbij.2 F -1 = F
rinvbij.3a F A B
rinvbij.3b F B A
rinvbij.4a A dom F
rinvbij.4b B dom F
Assertion rinvf1o F A : A 1-1 onto B

Proof

Step Hyp Ref Expression
1 rinvbij.1 Fun F
2 rinvbij.2 F -1 = F
3 rinvbij.3a F A B
4 rinvbij.3b F B A
5 rinvbij.4a A dom F
6 rinvbij.4b B dom F
7 fdmrn Fun F F : dom F ran F
8 1 7 mpbi F : dom F ran F
9 2 funeqi Fun F -1 Fun F
10 1 9 mpbir Fun F -1
11 df-f1 F : dom F 1-1 ran F F : dom F ran F Fun F -1
12 8 10 11 mpbir2an F : dom F 1-1 ran F
13 f1ores F : dom F 1-1 ran F A dom F F A : A 1-1 onto F A
14 12 5 13 mp2an F A : A 1-1 onto F A
15 funimass3 Fun F B dom F F B A B F -1 A
16 1 6 15 mp2an F B A B F -1 A
17 4 16 mpbi B F -1 A
18 2 imaeq1i F -1 A = F A
19 17 18 sseqtri B F A
20 3 19 eqssi F A = B
21 f1oeq3 F A = B F A : A 1-1 onto F A F A : A 1-1 onto B
22 20 21 ax-mp F A : A 1-1 onto F A F A : A 1-1 onto B
23 14 22 mpbi F A : A 1-1 onto B