Metamath Proof Explorer


Theorem rinvmod

Description: Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovmo . (Contributed by AV, 31-Dec-2023)

Ref Expression
Hypotheses rinvmod.b B = Base G
rinvmod.0 0 ˙ = 0 G
rinvmod.p + ˙ = + G
rinvmod.m φ G CMnd
rinvmod.a φ A B
Assertion rinvmod φ * w B A + ˙ w = 0 ˙

Proof

Step Hyp Ref Expression
1 rinvmod.b B = Base G
2 rinvmod.0 0 ˙ = 0 G
3 rinvmod.p + ˙ = + G
4 rinvmod.m φ G CMnd
5 rinvmod.a φ A B
6 4 adantr φ w B G CMnd
7 simpr φ w B w B
8 5 adantr φ w B A B
9 1 3 cmncom G CMnd w B A B w + ˙ A = A + ˙ w
10 6 7 8 9 syl3anc φ w B w + ˙ A = A + ˙ w
11 10 adantr φ w B A + ˙ w = 0 ˙ w + ˙ A = A + ˙ w
12 simpr φ w B A + ˙ w = 0 ˙ A + ˙ w = 0 ˙
13 11 12 eqtrd φ w B A + ˙ w = 0 ˙ w + ˙ A = 0 ˙
14 13 12 jca φ w B A + ˙ w = 0 ˙ w + ˙ A = 0 ˙ A + ˙ w = 0 ˙
15 14 ex φ w B A + ˙ w = 0 ˙ w + ˙ A = 0 ˙ A + ˙ w = 0 ˙
16 15 ralrimiva φ w B A + ˙ w = 0 ˙ w + ˙ A = 0 ˙ A + ˙ w = 0 ˙
17 cmnmnd G CMnd G Mnd
18 4 17 syl φ G Mnd
19 1 2 3 18 5 mndinvmod φ * w B w + ˙ A = 0 ˙ A + ˙ w = 0 ˙
20 rmoim w B A + ˙ w = 0 ˙ w + ˙ A = 0 ˙ A + ˙ w = 0 ˙ * w B w + ˙ A = 0 ˙ A + ˙ w = 0 ˙ * w B A + ˙ w = 0 ˙
21 16 19 20 sylc φ * w B A + ˙ w = 0 ˙