Metamath Proof Explorer


Theorem riota2f

Description: This theorem shows a condition that allows us to represent a descriptor with a class expression B . (Contributed by NM, 23-Aug-2011) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses riota2f.1 _ x B
riota2f.2 x ψ
riota2f.3 x = B φ ψ
Assertion riota2f B A ∃! x A φ ψ ι x A | φ = B

Proof

Step Hyp Ref Expression
1 riota2f.1 _ x B
2 riota2f.2 x ψ
3 riota2f.3 x = B φ ψ
4 1 nfel1 x B A
5 1 a1i B A _ x B
6 2 a1i B A x ψ
7 id B A B A
8 3 adantl B A x = B φ ψ
9 4 5 6 7 8 riota2df B A ∃! x A φ ψ ι x A | φ = B