Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Restricted iota (description binder)
riota2f
Metamath Proof Explorer
Description: This theorem shows a condition that allows us to represent a descriptor
with a class expression B . (Contributed by NM , 23-Aug-2011)
(Revised by Mario Carneiro , 15-Oct-2016)
Ref
Expression
Hypotheses
riota2f.1
⊢ Ⅎ _ x B
riota2f.2
⊢ Ⅎ x ψ
riota2f.3
⊢ x = B → φ ↔ ψ
Assertion
riota2f
⊢ B ∈ A ∧ ∃! x ∈ A φ → ψ ↔ ι x ∈ A | φ = B
Proof
Step
Hyp
Ref
Expression
1
riota2f.1
⊢ Ⅎ _ x B
2
riota2f.2
⊢ Ⅎ x ψ
3
riota2f.3
⊢ x = B → φ ↔ ψ
4
1
nfel1
⊢ Ⅎ x B ∈ A
5
1
a1i
⊢ B ∈ A → Ⅎ _ x B
6
2
a1i
⊢ B ∈ A → Ⅎ x ψ
7
id
⊢ B ∈ A → B ∈ A
8
3
adantl
⊢ B ∈ A ∧ x = B → φ ↔ ψ
9
4 5 6 7 8
riota2df
⊢ B ∈ A ∧ ∃! x ∈ A φ → ψ ↔ ι x ∈ A | φ = B