Metamath Proof Explorer


Theorem riotacl

Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011)

Ref Expression
Assertion riotacl ∃! x A φ ι x A | φ A

Proof

Step Hyp Ref Expression
1 ssrab2 x A | φ A
2 riotacl2 ∃! x A φ ι x A | φ x A | φ
3 1 2 sselid ∃! x A φ ι x A | φ A