Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Restricted iota (description binder)
riotacl
Next ⟩
riotasbc
Metamath Proof Explorer
Ascii
Unicode
Theorem
riotacl
Description:
Closure of restricted iota.
(Contributed by
NM
, 21-Aug-2011)
Ref
Expression
Assertion
riotacl
⊢
∃!
x
∈
A
φ
→
ι
x
∈
A
|
φ
∈
A
Proof
Step
Hyp
Ref
Expression
1
ssrab2
⊢
x
∈
A
|
φ
⊆
A
2
riotacl2
⊢
∃!
x
∈
A
φ
→
ι
x
∈
A
|
φ
∈
x
∈
A
|
φ
3
1
2
sselid
⊢
∃!
x
∈
A
φ
→
ι
x
∈
A
|
φ
∈
A