Metamath Proof Explorer


Theorem riotacl2

Description: Membership law for "the unique element in A such that ph ". (Contributed by NM, 21-Aug-2011) (Revised by Mario Carneiro, 23-Dec-2016)

Ref Expression
Assertion riotacl2 ∃! x A φ ι x A | φ x A | φ

Proof

Step Hyp Ref Expression
1 df-reu ∃! x A φ ∃! x x A φ
2 iotacl ∃! x x A φ ι x | x A φ x | x A φ
3 1 2 sylbi ∃! x A φ ι x | x A φ x | x A φ
4 df-riota ι x A | φ = ι x | x A φ
5 df-rab x A | φ = x | x A φ
6 3 4 5 3eltr4g ∃! x A φ ι x A | φ x A | φ