Metamath Proof Explorer


Theorem riotaclb

Description: Bidirectional closure of restricted iota when domain is not empty. (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 24-Dec-2016) (Revised by NM, 13-Sep-2018)

Ref Expression
Assertion riotaclb ¬ A ∃! x A φ ι x A | φ A

Proof

Step Hyp Ref Expression
1 riotacl ∃! x A φ ι x A | φ A
2 riotaund ¬ ∃! x A φ ι x A | φ =
3 2 eleq1d ¬ ∃! x A φ ι x A | φ A A
4 3 notbid ¬ ∃! x A φ ¬ ι x A | φ A ¬ A
5 4 biimprcd ¬ A ¬ ∃! x A φ ¬ ι x A | φ A
6 5 con4d ¬ A ι x A | φ A ∃! x A φ
7 1 6 impbid2 ¬ A ∃! x A φ ι x A | φ A