Metamath Proof Explorer


Theorem riotaclbgBAD

Description: Closure of restricted iota. (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion riotaclbgBAD A V ∃! x A φ ι x A | φ A

Proof

Step Hyp Ref Expression
1 riotacl ∃! x A φ ι x A | φ A
2 undefnel2 A V ¬ Undef A A
3 iffalse ¬ ∃! x A φ if ∃! x A φ ι x | x A φ Undef x | x A = Undef x | x A
4 ax-riotaBAD ι x A | φ = if ∃! x A φ ι x | x A φ Undef x | x A
5 abid1 A = x | x A
6 5 fveq2i Undef A = Undef x | x A
7 3 4 6 3eqtr4g ¬ ∃! x A φ ι x A | φ = Undef A
8 7 eleq1d ¬ ∃! x A φ ι x A | φ A Undef A A
9 8 notbid ¬ ∃! x A φ ¬ ι x A | φ A ¬ Undef A A
10 2 9 syl5ibrcom A V ¬ ∃! x A φ ¬ ι x A | φ A
11 10 con4d A V ι x A | φ A ∃! x A φ
12 1 11 impbid2 A V ∃! x A φ ι x A | φ A