Metamath Proof Explorer


Theorem riotaeqbidva

Description: Equivalent wff's yield equal restricted definition binders (deduction form). ( raleqbidva analog.) (Contributed by Thierry Arnoux, 29-Jan-2025)

Ref Expression
Hypotheses riotaeqbidva.1 φ A = B
riotaeqbidva.2 φ x A ψ χ
Assertion riotaeqbidva φ ι x A | ψ = ι x B | χ

Proof

Step Hyp Ref Expression
1 riotaeqbidva.1 φ A = B
2 riotaeqbidva.2 φ x A ψ χ
3 2 riotabidva φ ι x A | ψ = ι x A | χ
4 1 riotaeqdv φ ι x A | χ = ι x B | χ
5 3 4 eqtrd φ ι x A | ψ = ι x B | χ