Metamath Proof Explorer


Theorem riotaeqdv

Description: Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011)

Ref Expression
Hypothesis riotaeqdv.1 φ A = B
Assertion riotaeqdv φ ι x A | ψ = ι x B | ψ

Proof

Step Hyp Ref Expression
1 riotaeqdv.1 φ A = B
2 1 eleq2d φ x A x B
3 2 anbi1d φ x A ψ x B ψ
4 3 iotabidv φ ι x | x A ψ = ι x | x B ψ
5 df-riota ι x A | ψ = ι x | x A ψ
6 df-riota ι x B | ψ = ι x | x B ψ
7 4 5 6 3eqtr4g φ ι x A | ψ = ι x B | ψ