Metamath Proof Explorer


Theorem riotaprop

Description: Properties of a restricted definite description operator. (Contributed by NM, 23-Nov-2013)

Ref Expression
Hypotheses riotaprop.0 x ψ
riotaprop.1 B = ι x A | φ
riotaprop.2 x = B φ ψ
Assertion riotaprop ∃! x A φ B A ψ

Proof

Step Hyp Ref Expression
1 riotaprop.0 x ψ
2 riotaprop.1 B = ι x A | φ
3 riotaprop.2 x = B φ ψ
4 riotacl ∃! x A φ ι x A | φ A
5 2 4 eqeltrid ∃! x A φ B A
6 2 eqcomi ι x A | φ = B
7 nfriota1 _ x ι x A | φ
8 2 7 nfcxfr _ x B
9 8 1 3 riota2f B A ∃! x A φ ψ ι x A | φ = B
10 6 9 mpbiri B A ∃! x A φ ψ
11 5 10 mpancom ∃! x A φ ψ
12 5 11 jca ∃! x A φ B A ψ