Metamath Proof Explorer


Theorem riotasbc

Description: Substitution law for descriptions. Compare iotasbc . (Contributed by NM, 23-Aug-2011) (Proof shortened by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion riotasbc ∃! x A φ [˙ ι x A | φ / x]˙ φ

Proof

Step Hyp Ref Expression
1 rabssab x A | φ x | φ
2 riotacl2 ∃! x A φ ι x A | φ x A | φ
3 1 2 sselid ∃! x A φ ι x A | φ x | φ
4 df-sbc [˙ ι x A | φ / x]˙ φ ι x A | φ x | φ
5 3 4 sylibr ∃! x A φ [˙ ι x A | φ / x]˙ φ