Metamath Proof Explorer


Theorem riotass

Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005) (Revised by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion riotass A B x A φ ∃! x B φ ι x A | φ = ι x B | φ

Proof

Step Hyp Ref Expression
1 reuss A B x A φ ∃! x B φ ∃! x A φ
2 riotasbc ∃! x A φ [˙ ι x A | φ / x]˙ φ
3 1 2 syl A B x A φ ∃! x B φ [˙ ι x A | φ / x]˙ φ
4 simp1 A B x A φ ∃! x B φ A B
5 riotacl ∃! x A φ ι x A | φ A
6 1 5 syl A B x A φ ∃! x B φ ι x A | φ A
7 4 6 sseldd A B x A φ ∃! x B φ ι x A | φ B
8 simp3 A B x A φ ∃! x B φ ∃! x B φ
9 nfriota1 _ x ι x A | φ
10 9 nfsbc1 x [˙ ι x A | φ / x]˙ φ
11 sbceq1a x = ι x A | φ φ [˙ ι x A | φ / x]˙ φ
12 9 10 11 riota2f ι x A | φ B ∃! x B φ [˙ ι x A | φ / x]˙ φ ι x B | φ = ι x A | φ
13 7 8 12 syl2anc A B x A φ ∃! x B φ [˙ ι x A | φ / x]˙ φ ι x B | φ = ι x A | φ
14 3 13 mpbid A B x A φ ∃! x B φ ι x B | φ = ι x A | φ
15 14 eqcomd A B x A φ ∃! x B φ ι x A | φ = ι x B | φ