Metamath Proof Explorer


Theorem riotassuni

Description: The restricted iota class is limited in size by the base set. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion riotassuni ι x A | φ 𝒫 A A

Proof

Step Hyp Ref Expression
1 riotauni ∃! x A φ ι x A | φ = x A | φ
2 ssrab2 x A | φ A
3 2 unissi x A | φ A
4 ssun2 A 𝒫 A A
5 3 4 sstri x A | φ 𝒫 A A
6 1 5 eqsstrdi ∃! x A φ ι x A | φ 𝒫 A A
7 riotaund ¬ ∃! x A φ ι x A | φ =
8 0ss 𝒫 A A
9 7 8 eqsstrdi ¬ ∃! x A φ ι x A | φ 𝒫 A A
10 6 9 pm2.61i ι x A | φ 𝒫 A A