Metamath Proof Explorer


Theorem riotasv

Description: Value of description binder D for a single-valued class expression C ( y ) (as in e.g. reusv2 ). Special case of riota2f . (Contributed by NM, 26-Jan-2013) (Proof shortened by Mario Carneiro, 6-Dec-2016)

Ref Expression
Hypotheses riotasv.1 A V
riotasv.2 D = ι x A | y B φ x = C
Assertion riotasv D A y B φ D = C

Proof

Step Hyp Ref Expression
1 riotasv.1 A V
2 riotasv.2 D = ι x A | y B φ x = C
3 2 a1i D A D = ι x A | y B φ x = C
4 id D A D A
5 3 4 riotasvd D A A V y B φ D = C
6 1 5 mpan2 D A y B φ D = C
7 6 3impib D A y B φ D = C