Metamath Proof Explorer


Theorem riotasv2s

Description: The value of description binder D for a single-valued class expression C ( y ) (as in e.g. reusv2 ) in the form of a substitution instance. Special case of riota2f . (Contributed by NM, 3-Mar-2013) (Proof shortened by Mario Carneiro, 6-Dec-2016)

Ref Expression
Hypothesis riotasv2s.2 D = ι x A | y B φ x = C
Assertion riotasv2s A V D A E B [˙E / y]˙ φ D = E / y C

Proof

Step Hyp Ref Expression
1 riotasv2s.2 D = ι x A | y B φ x = C
2 3simpc A V D A E B [˙E / y]˙ φ D A E B [˙E / y]˙ φ
3 simp1 A V D A E B [˙E / y]˙ φ A V
4 nfra1 y y B φ x = C
5 nfcv _ y A
6 4 5 nfriota _ y ι x A | y B φ x = C
7 1 6 nfcxfr _ y D
8 7 nfel1 y D A
9 nfv y E B
10 nfsbc1v y [˙E / y]˙ φ
11 9 10 nfan y E B [˙E / y]˙ φ
12 8 11 nfan y D A E B [˙E / y]˙ φ
13 nfcsb1v _ y E / y C
14 13 a1i D A E B [˙E / y]˙ φ _ y E / y C
15 10 a1i D A E B [˙E / y]˙ φ y [˙E / y]˙ φ
16 1 a1i D A E B [˙E / y]˙ φ D = ι x A | y B φ x = C
17 sbceq1a y = E φ [˙E / y]˙ φ
18 17 adantl D A E B [˙E / y]˙ φ y = E φ [˙E / y]˙ φ
19 csbeq1a y = E C = E / y C
20 19 adantl D A E B [˙E / y]˙ φ y = E C = E / y C
21 simpl D A E B [˙E / y]˙ φ D A
22 simprl D A E B [˙E / y]˙ φ E B
23 simprr D A E B [˙E / y]˙ φ [˙E / y]˙ φ
24 12 14 15 16 18 20 21 22 23 riotasv2d D A E B [˙E / y]˙ φ A V D = E / y C
25 2 3 24 syl2anc A V D A E B [˙E / y]˙ φ D = E / y C