Metamath Proof Explorer


Theorem riotasv3d

Description: A property ch holding for a representative of a single-valued class expression C ( y ) (see e.g. reusv2 ) also holds for its description binder D (in the form of property th ). (Contributed by NM, 5-Mar-2013) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses riotasv3d.1 y φ
riotasv3d.2 φ y θ
riotasv3d.3 φ D = ι x A | y B ψ x = C
riotasv3d.4 φ C = D χ θ
riotasv3d.5 φ y B ψ χ
riotasv3d.6 φ D A
riotasv3d.7 φ y B ψ
Assertion riotasv3d φ A V θ

Proof

Step Hyp Ref Expression
1 riotasv3d.1 y φ
2 riotasv3d.2 φ y θ
3 riotasv3d.3 φ D = ι x A | y B ψ x = C
4 riotasv3d.4 φ C = D χ θ
5 riotasv3d.5 φ y B ψ χ
6 riotasv3d.6 φ D A
7 riotasv3d.7 φ y B ψ
8 elex A V A V
9 7 adantr φ A V y B ψ
10 nfv y A V
11 5 imp φ y B ψ χ
12 11 adantrl φ A V y B ψ χ
13 3 6 riotasvd φ A V y B ψ D = C
14 13 impr φ A V y B ψ D = C
15 14 eqcomd φ A V y B ψ C = D
16 15 4 syldan φ A V y B ψ χ θ
17 12 16 mpbid φ A V y B ψ θ
18 17 exp45 φ A V y B ψ θ
19 1 10 18 ralrimd φ A V y B ψ θ
20 r19.23t y θ y B ψ θ y B ψ θ
21 2 20 syl φ y B ψ θ y B ψ θ
22 19 21 sylibd φ A V y B ψ θ
23 22 imp φ A V y B ψ θ
24 9 23 mpd φ A V θ
25 8 24 sylan2 φ A V θ