Metamath Proof Explorer


Theorem riotasvd

Description: Deduction version of riotasv . (Contributed by NM, 4-Mar-2013) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses riotasvd.1 φ D = ι x A | y B ψ x = C
riotasvd.2 φ D A
Assertion riotasvd φ A V y B ψ D = C

Proof

Step Hyp Ref Expression
1 riotasvd.1 φ D = ι x A | y B ψ x = C
2 riotasvd.2 φ D A
3 1 adantr φ A V D = ι x A | y B ψ x = C
4 2 adantr φ A V D A
5 3 4 eqeltrrd φ A V ι x A | y B ψ x = C A
6 riotaclbgBAD A V ∃! x A y B ψ x = C ι x A | y B ψ x = C A
7 6 adantl φ A V ∃! x A y B ψ x = C ι x A | y B ψ x = C A
8 5 7 mpbird φ A V ∃! x A y B ψ x = C
9 riotasbc ∃! x A y B ψ x = C [˙ ι x A | y B ψ x = C / x]˙ y B ψ x = C
10 8 9 syl φ A V [˙ ι x A | y B ψ x = C / x]˙ y B ψ x = C
11 eqeq1 x = z x = C z = C
12 11 imbi2d x = z ψ x = C ψ z = C
13 12 ralbidv x = z y B ψ x = C y B ψ z = C
14 nfra1 y y B ψ x = C
15 nfcv _ y A
16 14 15 nfriota _ y ι x A | y B ψ x = C
17 16 nfeq2 y z = ι x A | y B ψ x = C
18 eqeq1 z = ι x A | y B ψ x = C z = C ι x A | y B ψ x = C = C
19 18 imbi2d z = ι x A | y B ψ x = C ψ z = C ψ ι x A | y B ψ x = C = C
20 17 19 ralbid z = ι x A | y B ψ x = C y B ψ z = C y B ψ ι x A | y B ψ x = C = C
21 13 20 sbcie2g ι x A | y B ψ x = C A [˙ ι x A | y B ψ x = C / x]˙ y B ψ x = C y B ψ ι x A | y B ψ x = C = C
22 5 21 syl φ A V [˙ ι x A | y B ψ x = C / x]˙ y B ψ x = C y B ψ ι x A | y B ψ x = C = C
23 10 22 mpbid φ A V y B ψ ι x A | y B ψ x = C = C
24 rsp y B ψ ι x A | y B ψ x = C = C y B ψ ι x A | y B ψ x = C = C
25 23 24 syl φ A V y B ψ ι x A | y B ψ x = C = C
26 25 impd φ A V y B ψ ι x A | y B ψ x = C = C
27 3 eqeq1d φ A V D = C ι x A | y B ψ x = C = C
28 26 27 sylibrd φ A V y B ψ D = C