Metamath Proof Explorer


Theorem riotaund

Description: Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012) (Revised by Mario Carneiro, 15-Oct-2016) (Revised by NM, 13-Sep-2018)

Ref Expression
Assertion riotaund ¬ ∃! x A φ ι x A | φ =

Proof

Step Hyp Ref Expression
1 df-riota ι x A | φ = ι x | x A φ
2 df-reu ∃! x A φ ∃! x x A φ
3 iotanul ¬ ∃! x x A φ ι x | x A φ =
4 2 3 sylnbi ¬ ∃! x A φ ι x | x A φ =
5 1 4 eqtrid ¬ ∃! x A φ ι x A | φ =