Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Restricted iota (description binder)
riotauni
Next ⟩
nfriota1
Metamath Proof Explorer
Ascii
Unicode
Theorem
riotauni
Description:
Restricted iota in terms of class union.
(Contributed by
NM
, 11-Oct-2011)
Ref
Expression
Assertion
riotauni
⊢
∃!
x
∈
A
φ
→
ι
x
∈
A
|
φ
=
⋃
x
∈
A
|
φ
Proof
Step
Hyp
Ref
Expression
1
df-reu
⊢
∃!
x
∈
A
φ
↔
∃!
x
x
∈
A
∧
φ
2
iotauni
⊢
∃!
x
x
∈
A
∧
φ
→
ι
x
|
x
∈
A
∧
φ
=
⋃
x
|
x
∈
A
∧
φ
3
1
2
sylbi
⊢
∃!
x
∈
A
φ
→
ι
x
|
x
∈
A
∧
φ
=
⋃
x
|
x
∈
A
∧
φ
4
df-riota
⊢
ι
x
∈
A
|
φ
=
ι
x
|
x
∈
A
∧
φ
5
df-rab
⊢
x
∈
A
|
φ
=
x
|
x
∈
A
∧
φ
6
5
unieqi
⊢
⋃
x
∈
A
|
φ
=
⋃
x
|
x
∈
A
∧
φ
7
3
4
6
3eqtr4g
⊢
∃!
x
∈
A
φ
→
ι
x
∈
A
|
φ
=
⋃
x
∈
A
|
φ