Metamath Proof Explorer


Theorem riotauni

Description: Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011)

Ref Expression
Assertion riotauni ∃! x A φ ι x A | φ = x A | φ

Proof

Step Hyp Ref Expression
1 df-reu ∃! x A φ ∃! x x A φ
2 iotauni ∃! x x A φ ι x | x A φ = x | x A φ
3 1 2 sylbi ∃! x A φ ι x | x A φ = x | x A φ
4 df-riota ι x A | φ = ι x | x A φ
5 df-rab x A | φ = x | x A φ
6 5 unieqi x A | φ = x | x A φ
7 3 4 6 3eqtr4g ∃! x A φ ι x A | φ = x A | φ