Metamath Proof Explorer


Theorem riotaxfrd

Description: Change the variable x in the expression for "the unique x such that ps " to another variable y contained in expression B . Use reuhypd to eliminate the last hypothesis. (Contributed by NM, 16-Jan-2012) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses riotaxfrd.1 _ y C
riotaxfrd.2 φ y A B A
riotaxfrd.3 φ ι y A | χ A C A
riotaxfrd.4 x = B ψ χ
riotaxfrd.5 y = ι y A | χ B = C
riotaxfrd.6 φ x A ∃! y A x = B
Assertion riotaxfrd φ ∃! x A ψ ι x A | ψ = C

Proof

Step Hyp Ref Expression
1 riotaxfrd.1 _ y C
2 riotaxfrd.2 φ y A B A
3 riotaxfrd.3 φ ι y A | χ A C A
4 riotaxfrd.4 x = B ψ χ
5 riotaxfrd.5 y = ι y A | χ B = C
6 riotaxfrd.6 φ x A ∃! y A x = B
7 rabid x x A | ψ x A ψ
8 7 baib x A x x A | ψ ψ
9 8 riotabiia ι x A | x x A | ψ = ι x A | ψ
10 2 6 4 reuxfr1ds φ ∃! x A ψ ∃! y A χ
11 riotacl2 ∃! y A χ ι y A | χ y A | χ
12 11 adantl φ ∃! y A χ ι y A | χ y A | χ
13 riotacl ∃! y A χ ι y A | χ A
14 nfriota1 _ y ι y A | χ
15 14 1 2 4 5 rabxfrd φ ι y A | χ A C x A | ψ ι y A | χ y A | χ
16 13 15 sylan2 φ ∃! y A χ C x A | ψ ι y A | χ y A | χ
17 12 16 mpbird φ ∃! y A χ C x A | ψ
18 17 ex φ ∃! y A χ C x A | ψ
19 10 18 sylbid φ ∃! x A ψ C x A | ψ
20 19 imp φ ∃! x A ψ C x A | ψ
21 3 ex φ ι y A | χ A C A
22 13 21 syl5 φ ∃! y A χ C A
23 10 22 sylbid φ ∃! x A ψ C A
24 23 imp φ ∃! x A ψ C A
25 7 baibr x A ψ x x A | ψ
26 25 reubiia ∃! x A ψ ∃! x A x x A | ψ
27 26 biimpi ∃! x A ψ ∃! x A x x A | ψ
28 27 adantl φ ∃! x A ψ ∃! x A x x A | ψ
29 nfcv _ x C
30 nfrab1 _ x x A | ψ
31 30 nfel2 x C x A | ψ
32 eleq1 x = C x x A | ψ C x A | ψ
33 29 31 32 riota2f C A ∃! x A x x A | ψ C x A | ψ ι x A | x x A | ψ = C
34 24 28 33 syl2anc φ ∃! x A ψ C x A | ψ ι x A | x x A | ψ = C
35 20 34 mpbid φ ∃! x A ψ ι x A | x x A | ψ = C
36 9 35 eqtr3id φ ∃! x A ψ ι x A | ψ = C