Metamath Proof Explorer


Theorem riscer

Description: Ring isomorphism is an equivalence relation. (Contributed by Jeff Madsen, 16-Jun-2011) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion riscer 𝑟 Er dom 𝑟

Proof

Step Hyp Ref Expression
1 df-risc 𝑟 = r s | r RingOps s RingOps f f r RngIso s
2 1 relopabiv Rel 𝑟
3 eqid dom 𝑟 = dom 𝑟
4 vex r V
5 vex s V
6 4 5 isrisc r 𝑟 s r RingOps s RingOps f f r RngIso s
7 rngoisocnv r RingOps s RingOps f r RngIso s f -1 s RngIso r
8 7 3expia r RingOps s RingOps f r RngIso s f -1 s RngIso r
9 risci s RingOps r RingOps f -1 s RngIso r s 𝑟 r
10 9 3expia s RingOps r RingOps f -1 s RngIso r s 𝑟 r
11 10 ancoms r RingOps s RingOps f -1 s RngIso r s 𝑟 r
12 8 11 syld r RingOps s RingOps f r RngIso s s 𝑟 r
13 12 exlimdv r RingOps s RingOps f f r RngIso s s 𝑟 r
14 13 imp r RingOps s RingOps f f r RngIso s s 𝑟 r
15 6 14 sylbi r 𝑟 s s 𝑟 r
16 vex t V
17 5 16 isrisc s 𝑟 t s RingOps t RingOps g g s RngIso t
18 exdistrv f g f r RngIso s g s RngIso t f f r RngIso s g g s RngIso t
19 rngoisoco r RingOps s RingOps t RingOps f r RngIso s g s RngIso t g f r RngIso t
20 19 ex r RingOps s RingOps t RingOps f r RngIso s g s RngIso t g f r RngIso t
21 risci r RingOps t RingOps g f r RngIso t r 𝑟 t
22 21 3expia r RingOps t RingOps g f r RngIso t r 𝑟 t
23 22 3adant2 r RingOps s RingOps t RingOps g f r RngIso t r 𝑟 t
24 20 23 syld r RingOps s RingOps t RingOps f r RngIso s g s RngIso t r 𝑟 t
25 24 exlimdvv r RingOps s RingOps t RingOps f g f r RngIso s g s RngIso t r 𝑟 t
26 18 25 syl5bir r RingOps s RingOps t RingOps f f r RngIso s g g s RngIso t r 𝑟 t
27 26 3expb r RingOps s RingOps t RingOps f f r RngIso s g g s RngIso t r 𝑟 t
28 27 adantlr r RingOps s RingOps s RingOps t RingOps f f r RngIso s g g s RngIso t r 𝑟 t
29 28 imp r RingOps s RingOps s RingOps t RingOps f f r RngIso s g g s RngIso t r 𝑟 t
30 29 an4s r RingOps s RingOps f f r RngIso s s RingOps t RingOps g g s RngIso t r 𝑟 t
31 6 17 30 syl2anb r 𝑟 s s 𝑟 t r 𝑟 t
32 15 31 pm3.2i r 𝑟 s s 𝑟 r r 𝑟 s s 𝑟 t r 𝑟 t
33 32 ax-gen t r 𝑟 s s 𝑟 r r 𝑟 s s 𝑟 t r 𝑟 t
34 33 gen2 r s t r 𝑟 s s 𝑟 r r 𝑟 s s 𝑟 t r 𝑟 t
35 dfer2 𝑟 Er dom 𝑟 Rel 𝑟 dom 𝑟 = dom 𝑟 r s t r 𝑟 s s 𝑟 r r 𝑟 s s 𝑟 t r 𝑟 t
36 2 3 34 35 mpbir3an 𝑟 Er dom 𝑟