Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Falling and Rising Factorial
risefaccl
Next ⟩
fallfaccl
Metamath Proof Explorer
Ascii
Unicode
Theorem
risefaccl
Description:
Closure law for rising factorial.
(Contributed by
Scott Fenton
, 5-Jan-2018)
Ref
Expression
Assertion
risefaccl
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
→
A
N
‾
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
ssid
⊢
ℂ
⊆
ℂ
2
ax-1cn
⊢
1
∈
ℂ
3
mulcl
⊢
x
∈
ℂ
∧
y
∈
ℂ
→
x
⁢
y
∈
ℂ
4
nn0cn
⊢
k
∈
ℕ
0
→
k
∈
ℂ
5
addcl
⊢
A
∈
ℂ
∧
k
∈
ℂ
→
A
+
k
∈
ℂ
6
4
5
sylan2
⊢
A
∈
ℂ
∧
k
∈
ℕ
0
→
A
+
k
∈
ℂ
7
1
2
3
6
risefaccllem
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
→
A
N
‾
∈
ℂ