Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Falling and Rising Factorial
risefacfac
Next ⟩
fallfacfwd
Metamath Proof Explorer
Ascii
Unicode
Theorem
risefacfac
Description:
Relate rising factorial to factorial.
(Contributed by
Scott Fenton
, 5-Jan-2018)
Ref
Expression
Assertion
risefacfac
⊢
N
∈
ℕ
0
→
1
N
‾
=
N
!
Proof
Step
Hyp
Ref
Expression
1
1cnd
⊢
N
∈
ℕ
0
∧
k
∈
1
…
N
→
1
∈
ℂ
2
elfznn
⊢
k
∈
1
…
N
→
k
∈
ℕ
3
2
nncnd
⊢
k
∈
1
…
N
→
k
∈
ℂ
4
3
adantl
⊢
N
∈
ℕ
0
∧
k
∈
1
…
N
→
k
∈
ℂ
5
1
4
pncan3d
⊢
N
∈
ℕ
0
∧
k
∈
1
…
N
→
1
+
k
-
1
=
k
6
5
prodeq2dv
⊢
N
∈
ℕ
0
→
∏
k
=
1
N
1
+
k
-
1
=
∏
k
=
1
N
k
7
ax-1cn
⊢
1
∈
ℂ
8
risefacval2
⊢
1
∈
ℂ
∧
N
∈
ℕ
0
→
1
N
‾
=
∏
k
=
1
N
1
+
k
-
1
9
7
8
mpan
⊢
N
∈
ℕ
0
→
1
N
‾
=
∏
k
=
1
N
1
+
k
-
1
10
fprodfac
⊢
N
∈
ℕ
0
→
N
!
=
∏
k
=
1
N
k
11
6
9
10
3eqtr4d
⊢
N
∈
ℕ
0
→
1
N
‾
=
N
!