Metamath Proof Explorer


Theorem risefacfac

Description: Relate rising factorial to factorial. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion risefacfac N 0 1 N = N !

Proof

Step Hyp Ref Expression
1 1cnd N 0 k 1 N 1
2 elfznn k 1 N k
3 2 nncnd k 1 N k
4 3 adantl N 0 k 1 N k
5 1 4 pncan3d N 0 k 1 N 1 + k - 1 = k
6 5 prodeq2dv N 0 k = 1 N 1 + k - 1 = k = 1 N k
7 ax-1cn 1
8 risefacval2 1 N 0 1 N = k = 1 N 1 + k - 1
9 7 8 mpan N 0 1 N = k = 1 N 1 + k - 1
10 fprodfac N 0 N ! = k = 1 N k
11 6 9 10 3eqtr4d N 0 1 N = N !