Metamath Proof Explorer


Theorem risefacp1

Description: The value of the rising factorial at a successor. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion risefacp1 A N 0 A N + 1 = A N A + N

Proof

Step Hyp Ref Expression
1 nn0cn N 0 N
2 1 adantl A N 0 N
3 1cnd A N 0 1
4 2 3 pncand A N 0 N + 1 - 1 = N
5 4 oveq2d A N 0 0 N + 1 - 1 = 0 N
6 5 prodeq1d A N 0 k = 0 N + 1 - 1 A + k = k = 0 N A + k
7 elnn0uz N 0 N 0
8 7 biimpi N 0 N 0
9 8 adantl A N 0 N 0
10 elfznn0 k 0 N k 0
11 10 nn0cnd k 0 N k
12 addcl A k A + k
13 11 12 sylan2 A k 0 N A + k
14 13 adantlr A N 0 k 0 N A + k
15 oveq2 k = N A + k = A + N
16 9 14 15 fprodm1 A N 0 k = 0 N A + k = k = 0 N 1 A + k A + N
17 6 16 eqtrd A N 0 k = 0 N + 1 - 1 A + k = k = 0 N 1 A + k A + N
18 peano2nn0 N 0 N + 1 0
19 risefacval A N + 1 0 A N + 1 = k = 0 N + 1 - 1 A + k
20 18 19 sylan2 A N 0 A N + 1 = k = 0 N + 1 - 1 A + k
21 risefacval A N 0 A N = k = 0 N 1 A + k
22 21 oveq1d A N 0 A N A + N = k = 0 N 1 A + k A + N
23 17 20 22 3eqtr4d A N 0 A N + 1 = A N A + N