Metamath Proof Explorer


Theorem risefacp1d

Description: The value of the rising factorial at a successor. (Contributed by Scott Fenton, 19-Mar-2018)

Ref Expression
Hypotheses rffacp1d.1 φ A
rffacp1d.2 φ N 0
Assertion risefacp1d φ A N + 1 = A N A + N

Proof

Step Hyp Ref Expression
1 rffacp1d.1 φ A
2 rffacp1d.2 φ N 0
3 risefacp1 A N 0 A N + 1 = A N A + N
4 1 2 3 syl2anc φ A N + 1 = A N A + N