Metamath Proof Explorer


Theorem rlimabs

Description: Limit of the absolute value of a sequence. Proposition 12-2.4(c) of Gleason p. 172. (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimabs.1 φ k A B V
rlimabs.2 φ k A B C
Assertion rlimabs φ k A B C

Proof

Step Hyp Ref Expression
1 rlimabs.1 φ k A B V
2 rlimabs.2 φ k A B C
3 1 2 rlimmptrcl φ k A B
4 rlimcl k A B C C
5 2 4 syl φ C
6 absf abs :
7 ax-resscn
8 fss abs : abs :
9 6 7 8 mp2an abs :
10 9 a1i φ abs :
11 abscn2 C x + y + z z C < y z C < x
12 5 11 sylan φ x + y + z z C < y z C < x
13 3 5 2 10 12 rlimcn1b φ k A B C