Metamath Proof Explorer


Theorem rlimcl

Description: Closure of the limit of a sequence of complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion rlimcl F A A

Proof

Step Hyp Ref Expression
1 rlimf F A F : dom F
2 rlimss F A dom F
3 eqidd F A x dom F F x = F x
4 1 2 3 rlim F A F A A y + z x dom F z x F x A < y
5 4 ibi F A A y + z x dom F z x F x A < y
6 5 simpld F A A