Metamath Proof Explorer


Theorem rlimcn1b

Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimcn1b.1 φ k A B X
rlimcn1b.2 φ C X
rlimcn1b.3 φ k A B C
rlimcn1b.4 φ F : X
rlimcn1b.5 φ x + y + z X z C < y F z F C < x
Assertion rlimcn1b φ k A F B F C

Proof

Step Hyp Ref Expression
1 rlimcn1b.1 φ k A B X
2 rlimcn1b.2 φ C X
3 rlimcn1b.3 φ k A B C
4 rlimcn1b.4 φ F : X
5 rlimcn1b.5 φ x + y + z X z C < y F z F C < x
6 4 1 cofmpt φ F k A B = k A F B
7 1 fmpttd φ k A B : A X
8 7 2 3 4 5 rlimcn1 φ F k A B F C
9 6 8 eqbrtrrd φ k A F B F C