Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Limits
rlimcn1b
Next ⟩
rlimcn3
Metamath Proof Explorer
Ascii
Unicode
Theorem
rlimcn1b
Description:
Image of a limit under a continuous map.
(Contributed by
Mario Carneiro
, 10-May-2016)
Ref
Expression
Hypotheses
rlimcn1b.1
⊢
φ
∧
k
∈
A
→
B
∈
X
rlimcn1b.2
⊢
φ
→
C
∈
X
rlimcn1b.3
⊢
φ
→
k
∈
A
⟼
B
⇝
ℝ
C
rlimcn1b.4
⊢
φ
→
F
:
X
⟶
ℂ
rlimcn1b.5
⊢
φ
∧
x
∈
ℝ
+
→
∃
y
∈
ℝ
+
∀
z
∈
X
z
−
C
<
y
→
F
⁡
z
−
F
⁡
C
<
x
Assertion
rlimcn1b
⊢
φ
→
k
∈
A
⟼
F
⁡
B
⇝
ℝ
F
⁡
C
Proof
Step
Hyp
Ref
Expression
1
rlimcn1b.1
⊢
φ
∧
k
∈
A
→
B
∈
X
2
rlimcn1b.2
⊢
φ
→
C
∈
X
3
rlimcn1b.3
⊢
φ
→
k
∈
A
⟼
B
⇝
ℝ
C
4
rlimcn1b.4
⊢
φ
→
F
:
X
⟶
ℂ
5
rlimcn1b.5
⊢
φ
∧
x
∈
ℝ
+
→
∃
y
∈
ℝ
+
∀
z
∈
X
z
−
C
<
y
→
F
⁡
z
−
F
⁡
C
<
x
6
4
1
cofmpt
⊢
φ
→
F
∘
k
∈
A
⟼
B
=
k
∈
A
⟼
F
⁡
B
7
1
fmpttd
⊢
φ
→
k
∈
A
⟼
B
:
A
⟶
X
8
7
2
3
4
5
rlimcn1
⊢
φ
→
F
∘
k
∈
A
⟼
B
⇝
ℝ
F
⁡
C
9
6
8
eqbrtrrd
⊢
φ
→
k
∈
A
⟼
F
⁡
B
⇝
ℝ
F
⁡
C