Metamath Proof Explorer


Theorem rlimcn2

Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014)

Ref Expression
Hypotheses rlimcn2.1a φ z A B X
rlimcn2.1b φ z A C Y
rlimcn2.2a φ R X
rlimcn2.2b φ S Y
rlimcn2.3a φ z A B R
rlimcn2.3b φ z A C S
rlimcn2.4 φ F : X × Y
rlimcn2.5 φ x + r + s + u X v Y u R < r v S < s u F v R F S < x
Assertion rlimcn2 φ z A B F C R F S

Proof

Step Hyp Ref Expression
1 rlimcn2.1a φ z A B X
2 rlimcn2.1b φ z A C Y
3 rlimcn2.2a φ R X
4 rlimcn2.2b φ S Y
5 rlimcn2.3a φ z A B R
6 rlimcn2.3b φ z A C S
7 rlimcn2.4 φ F : X × Y
8 rlimcn2.5 φ x + r + s + u X v Y u R < r v S < s u F v R F S < x
9 7 adantr φ z A F : X × Y
10 9 1 2 fovrnd φ z A B F C
11 7 3 4 fovrnd φ R F S
12 1 2 10 11 5 6 8 rlimcn3 φ z A B F C R F S