| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimcn3.1a |
|
| 2 |
|
rlimcn3.1b |
|
| 3 |
|
rlimcn3.1c |
|
| 4 |
|
rlimcn3.2 |
|
| 5 |
|
rlimcn3.3a |
|
| 6 |
|
rlimcn3.3b |
|
| 7 |
|
rlimcn3.4 |
|
| 8 |
1
|
ralrimiva |
|
| 9 |
8
|
adantr |
|
| 10 |
|
simprl |
|
| 11 |
5
|
adantr |
|
| 12 |
9 10 11
|
rlimi |
|
| 13 |
2
|
ralrimiva |
|
| 14 |
13
|
adantr |
|
| 15 |
|
simprr |
|
| 16 |
6
|
adantr |
|
| 17 |
14 15 16
|
rlimi |
|
| 18 |
|
reeanv |
|
| 19 |
|
r19.26 |
|
| 20 |
|
anim12 |
|
| 21 |
|
simplrl |
|
| 22 |
|
simplrr |
|
| 23 |
|
eqid |
|
| 24 |
23 1
|
dmmptd |
|
| 25 |
|
rlimss |
|
| 26 |
5 25
|
syl |
|
| 27 |
24 26
|
eqsstrrd |
|
| 28 |
27
|
ad2antrr |
|
| 29 |
28
|
sselda |
|
| 30 |
|
maxle |
|
| 31 |
21 22 29 30
|
syl3anc |
|
| 32 |
31
|
imbi1d |
|
| 33 |
20 32
|
imbitrrid |
|
| 34 |
33
|
ralimdva |
|
| 35 |
|
ifcl |
|
| 36 |
35
|
ancoms |
|
| 37 |
36
|
ad2antlr |
|
| 38 |
1
|
adantlr |
|
| 39 |
2
|
adantlr |
|
| 40 |
38 39
|
jca |
|
| 41 |
|
fvoveq1 |
|
| 42 |
41
|
breq1d |
|
| 43 |
42
|
anbi1d |
|
| 44 |
|
oveq1 |
|
| 45 |
44
|
fvoveq1d |
|
| 46 |
45
|
breq1d |
|
| 47 |
43 46
|
imbi12d |
|
| 48 |
|
fvoveq1 |
|
| 49 |
48
|
breq1d |
|
| 50 |
49
|
anbi2d |
|
| 51 |
|
oveq2 |
|
| 52 |
51
|
fvoveq1d |
|
| 53 |
52
|
breq1d |
|
| 54 |
50 53
|
imbi12d |
|
| 55 |
47 54
|
rspc2va |
|
| 56 |
40 55
|
sylan |
|
| 57 |
56
|
imim2d |
|
| 58 |
57
|
an32s |
|
| 59 |
58
|
ralimdva |
|
| 60 |
59
|
adantlr |
|
| 61 |
|
breq1 |
|
| 62 |
61
|
rspceaimv |
|
| 63 |
37 60 62
|
syl6an |
|
| 64 |
63
|
ex |
|
| 65 |
64
|
com23 |
|
| 66 |
34 65
|
syld |
|
| 67 |
19 66
|
biimtrrid |
|
| 68 |
67
|
rexlimdvva |
|
| 69 |
18 68
|
biimtrrid |
|
| 70 |
12 17 69
|
mp2and |
|
| 71 |
70
|
rexlimdvva |
|
| 72 |
71
|
imp |
|
| 73 |
7 72
|
syldan |
|
| 74 |
73
|
ralrimiva |
|
| 75 |
3
|
ralrimiva |
|
| 76 |
75 27 4
|
rlim2 |
|
| 77 |
74 76
|
mpbird |
|