Metamath Proof Explorer


Theorem rlimconst

Description: A constant sequence converges to its value. (Contributed by Mario Carneiro, 16-Sep-2014)

Ref Expression
Assertion rlimconst A B x A B B

Proof

Step Hyp Ref Expression
1 0re 0
2 simpllr A B y + x A B
3 2 subidd A B y + x A B B = 0
4 3 fveq2d A B y + x A B B = 0
5 abs0 0 = 0
6 4 5 eqtrdi A B y + x A B B = 0
7 rpgt0 y + 0 < y
8 7 ad2antlr A B y + x A 0 < y
9 6 8 eqbrtrd A B y + x A B B < y
10 9 a1d A B y + x A 0 x B B < y
11 10 ralrimiva A B y + x A 0 x B B < y
12 breq1 z = 0 z x 0 x
13 12 rspceaimv 0 x A 0 x B B < y z x A z x B B < y
14 1 11 13 sylancr A B y + z x A z x B B < y
15 14 ralrimiva A B y + z x A z x B B < y
16 simplr A B x A B
17 16 ralrimiva A B x A B
18 simpl A B A
19 simpr A B B
20 17 18 19 rlim2 A B x A B B y + z x A z x B B < y
21 15 20 mpbird A B x A B B