Metamath Proof Explorer


Theorem rlimcxp

Description: Any power to a positive exponent of a converging sequence also converges. (Contributed by Mario Carneiro, 18-Sep-2014)

Ref Expression
Hypotheses rlimcxp.1 φ n A B V
rlimcxp.2 φ n A B 0
rlimcxp.3 φ C +
Assertion rlimcxp φ n A B C 0

Proof

Step Hyp Ref Expression
1 rlimcxp.1 φ n A B V
2 rlimcxp.2 φ n A B 0
3 rlimcxp.3 φ C +
4 rlimf n A B 0 n A B : dom n A B
5 2 4 syl φ n A B : dom n A B
6 1 ralrimiva φ n A B V
7 dmmptg n A B V dom n A B = A
8 6 7 syl φ dom n A B = A
9 8 feq2d φ n A B : dom n A B n A B : A
10 5 9 mpbid φ n A B : A
11 eqid n A B = n A B
12 11 fmpt n A B n A B : A
13 10 12 sylibr φ n A B
14 13 adantr φ x + n A B
15 simpr φ x + x +
16 3 adantr φ x + C +
17 16 rprecred φ x + 1 C
18 15 17 rpcxpcld φ x + x 1 C +
19 2 adantr φ x + n A B 0
20 14 18 19 rlimi φ x + y n A y n B 0 < x 1 C
21 1 2 rlimmptrcl φ n A B
22 21 adantlr φ x + n A B
23 22 abscld φ x + n A B
24 22 absge0d φ x + n A 0 B
25 18 adantr φ x + n A x 1 C +
26 25 rpred φ x + n A x 1 C
27 25 rpge0d φ x + n A 0 x 1 C
28 3 ad2antrr φ x + n A C +
29 23 24 26 27 28 cxplt2d φ x + n A B < x 1 C B C < x 1 C C
30 22 subid1d φ x + n A B 0 = B
31 30 fveq2d φ x + n A B 0 = B
32 31 breq1d φ x + n A B 0 < x 1 C B < x 1 C
33 28 rpred φ x + n A C
34 abscxp2 B C B C = B C
35 22 33 34 syl2anc φ x + n A B C = B C
36 28 rpcnd φ x + n A C
37 28 rpne0d φ x + n A C 0
38 36 37 recid2d φ x + n A 1 C C = 1
39 38 oveq2d φ x + n A x 1 C C = x 1
40 simplr φ x + n A x +
41 17 adantr φ x + n A 1 C
42 40 41 36 cxpmuld φ x + n A x 1 C C = x 1 C C
43 40 rpcnd φ x + n A x
44 43 cxp1d φ x + n A x 1 = x
45 39 42 44 3eqtr3rd φ x + n A x = x 1 C C
46 35 45 breq12d φ x + n A B C < x B C < x 1 C C
47 29 32 46 3bitr4d φ x + n A B 0 < x 1 C B C < x
48 47 biimpd φ x + n A B 0 < x 1 C B C < x
49 48 imim2d φ x + n A y n B 0 < x 1 C y n B C < x
50 49 ralimdva φ x + n A y n B 0 < x 1 C n A y n B C < x
51 50 reximdv φ x + y n A y n B 0 < x 1 C y n A y n B C < x
52 20 51 mpd φ x + y n A y n B C < x
53 52 ralrimiva φ x + y n A y n B C < x
54 3 rpcnd φ C
55 54 adantr φ n A C
56 21 55 cxpcld φ n A B C
57 56 ralrimiva φ n A B C
58 rlimss n A B 0 dom n A B
59 2 58 syl φ dom n A B
60 8 59 eqsstrrd φ A
61 57 60 rlim0 φ n A B C 0 x + y n A y n B C < x
62 53 61 mpbird φ n A B C 0