Step |
Hyp |
Ref |
Expression |
1 |
|
rlimadd.3 |
|
2 |
|
rlimadd.4 |
|
3 |
|
rlimadd.5 |
|
4 |
|
rlimadd.6 |
|
5 |
|
rlimdiv.7 |
|
6 |
|
rlimdiv.8 |
|
7 |
1 3
|
rlimmptrcl |
|
8 |
2 4
|
rlimmptrcl |
|
9 |
8 6
|
reccld |
|
10 |
|
eldifsn |
|
11 |
8 6 10
|
sylanbrc |
|
12 |
11
|
fmpttd |
|
13 |
|
rlimcl |
|
14 |
4 13
|
syl |
|
15 |
|
eldifsn |
|
16 |
14 5 15
|
sylanbrc |
|
17 |
|
eldifsn |
|
18 |
|
reccl |
|
19 |
17 18
|
sylbi |
|
20 |
19
|
adantl |
|
21 |
20
|
fmpttd |
|
22 |
|
eqid |
|
23 |
22
|
reccn2 |
|
24 |
16 23
|
sylan |
|
25 |
|
oveq2 |
|
26 |
|
eqid |
|
27 |
|
ovex |
|
28 |
25 26 27
|
fvmpt |
|
29 |
|
oveq2 |
|
30 |
|
ovex |
|
31 |
29 26 30
|
fvmpt |
|
32 |
16 31
|
syl |
|
33 |
28 32
|
oveqan12rd |
|
34 |
33
|
fveq2d |
|
35 |
34
|
breq1d |
|
36 |
35
|
imbi2d |
|
37 |
36
|
ralbidva |
|
38 |
37
|
rexbidv |
|
39 |
38
|
biimpar |
|
40 |
24 39
|
syldan |
|
41 |
12 16 4 21 40
|
rlimcn1 |
|
42 |
|
eqidd |
|
43 |
|
eqidd |
|
44 |
|
oveq2 |
|
45 |
11 42 43 44
|
fmptco |
|
46 |
41 45 32
|
3brtr3d |
|
47 |
7 9 3 46
|
rlimmul |
|
48 |
7 8 6
|
divrecd |
|
49 |
48
|
mpteq2dva |
|
50 |
|
rlimcl |
|
51 |
3 50
|
syl |
|
52 |
51 14 5
|
divrecd |
|
53 |
47 49 52
|
3brtr4d |
|