| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimadd.3 |
|
| 2 |
|
rlimadd.4 |
|
| 3 |
|
rlimadd.5 |
|
| 4 |
|
rlimadd.6 |
|
| 5 |
|
rlimdiv.7 |
|
| 6 |
|
rlimdiv.8 |
|
| 7 |
1 3
|
rlimmptrcl |
|
| 8 |
2 4
|
rlimmptrcl |
|
| 9 |
8 6
|
reccld |
|
| 10 |
|
eldifsn |
|
| 11 |
8 6 10
|
sylanbrc |
|
| 12 |
11
|
fmpttd |
|
| 13 |
|
rlimcl |
|
| 14 |
4 13
|
syl |
|
| 15 |
|
eldifsn |
|
| 16 |
14 5 15
|
sylanbrc |
|
| 17 |
|
eldifsn |
|
| 18 |
|
reccl |
|
| 19 |
17 18
|
sylbi |
|
| 20 |
19
|
adantl |
|
| 21 |
20
|
fmpttd |
|
| 22 |
|
eqid |
|
| 23 |
22
|
reccn2 |
|
| 24 |
16 23
|
sylan |
|
| 25 |
|
oveq2 |
|
| 26 |
|
eqid |
|
| 27 |
|
ovex |
|
| 28 |
25 26 27
|
fvmpt |
|
| 29 |
|
oveq2 |
|
| 30 |
|
ovex |
|
| 31 |
29 26 30
|
fvmpt |
|
| 32 |
16 31
|
syl |
|
| 33 |
28 32
|
oveqan12rd |
|
| 34 |
33
|
fveq2d |
|
| 35 |
34
|
breq1d |
|
| 36 |
35
|
imbi2d |
|
| 37 |
36
|
ralbidva |
|
| 38 |
37
|
rexbidv |
|
| 39 |
38
|
biimpar |
|
| 40 |
24 39
|
syldan |
|
| 41 |
12 16 4 21 40
|
rlimcn1 |
|
| 42 |
|
eqidd |
|
| 43 |
|
eqidd |
|
| 44 |
|
oveq2 |
|
| 45 |
11 42 43 44
|
fmptco |
|
| 46 |
41 45 32
|
3brtr3d |
|
| 47 |
7 9 3 46
|
rlimmul |
|
| 48 |
7 8 6
|
divrecd |
|
| 49 |
48
|
mpteq2dva |
|
| 50 |
|
rlimcl |
|
| 51 |
3 50
|
syl |
|
| 52 |
51 14 5
|
divrecd |
|
| 53 |
47 49 52
|
3brtr4d |
|