Metamath Proof Explorer


Theorem rlimdm

Description: Two ways to express that a function has a limit. (The expression ( ~>rF ) is sometimes useful as a shorthand for "the unique limit of the function F "). (Contributed by Mario Carneiro, 8-May-2016)

Ref Expression
Hypotheses rlimuni.1 φ F : A
rlimuni.2 φ sup A * < = +∞
Assertion rlimdm φ F dom F F

Proof

Step Hyp Ref Expression
1 rlimuni.1 φ F : A
2 rlimuni.2 φ sup A * < = +∞
3 eldmg F dom F dom x F x
4 3 ibi F dom x F x
5 simpr φ F x F x
6 df-fv F = ι y | F y
7 1 adantr φ F x F y F : A
8 2 adantr φ F x F y sup A * < = +∞
9 simprr φ F x F y F y
10 simprl φ F x F y F x
11 7 8 9 10 rlimuni φ F x F y y = x
12 11 expr φ F x F y y = x
13 breq2 y = x F y F x
14 5 13 syl5ibrcom φ F x y = x F y
15 12 14 impbid φ F x F y y = x
16 15 adantr φ F x x V F y y = x
17 16 iota5 φ F x x V ι y | F y = x
18 17 elvd φ F x ι y | F y = x
19 6 18 eqtrid φ F x F = x
20 5 19 breqtrrd φ F x F F
21 20 ex φ F x F F
22 21 exlimdv φ x F x F F
23 4 22 syl5 φ F dom F F
24 rlimrel Rel
25 24 releldmi F F F dom
26 23 25 impbid1 φ F dom F F