Metamath Proof Explorer


Theorem rlimge0

Description: The limit of a sequence of nonnegative reals is nonnegative. (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimcld2.1 φ sup A * < = +∞
rlimcld2.2 φ x A B C
rlimrecl.3 φ x A B
rlimge0.4 φ x A 0 B
Assertion rlimge0 φ 0 C

Proof

Step Hyp Ref Expression
1 rlimcld2.1 φ sup A * < = +∞
2 rlimcld2.2 φ x A B C
3 rlimrecl.3 φ x A B
4 rlimge0.4 φ x A 0 B
5 3 recnd φ x A B
6 3 rered φ x A B = B
7 4 6 breqtrrd φ x A 0 B
8 1 2 5 7 rlimrege0 φ 0 C
9 1 2 3 rlimrecl φ C
10 9 rered φ C = C
11 8 10 breqtrd φ 0 C