Metamath Proof Explorer


Theorem rlimi

Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015)

Ref Expression
Hypotheses rlimi.1 φ z A B V
rlimi.2 φ R +
rlimi.3 φ z A B C
Assertion rlimi φ y z A y z B C < R

Proof

Step Hyp Ref Expression
1 rlimi.1 φ z A B V
2 rlimi.2 φ R +
3 rlimi.3 φ z A B C
4 breq2 x = R B C < x B C < R
5 4 imbi2d x = R y z B C < x y z B C < R
6 5 rexralbidv x = R y z A y z B C < x y z A y z B C < R
7 rlimf z A B C z A B : dom z A B
8 3 7 syl φ z A B : dom z A B
9 eqid z A B = z A B
10 9 fmpt z A B V z A B : A V
11 1 10 sylib φ z A B : A V
12 11 fdmd φ dom z A B = A
13 12 feq2d φ z A B : dom z A B z A B : A
14 8 13 mpbid φ z A B : A
15 9 fmpt z A B z A B : A
16 14 15 sylibr φ z A B
17 rlimss z A B C dom z A B
18 3 17 syl φ dom z A B
19 12 18 eqsstrrd φ A
20 rlimcl z A B C C
21 3 20 syl φ C
22 16 19 21 rlim2 φ z A B C x + y z A y z B C < x
23 3 22 mpbid φ x + y z A y z B C < x
24 6 23 2 rspcdva φ y z A y z B C < R